6-THIASTEROIDS

A NOVEL STEREOSELECTIVE PREPARATION OF 6-HETEROSTEROIDS

by

W.N. Speckamp* and H. Kesselaar1

Laboratory of Organic Chemistry, University of Amsterdam,
Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

(Received in UK 17 July 1974; accepted for publication 9 August 1974)

The biological activity patterns of several A-nor- and A-homo-thia-steroids² and 6-thiaestrogens³ have prompted the search for efficient routes for other analogues. In spite of numerous 6-heterosteroids known to-day no satisfactory and general procedure for the partial synthesis of 6-thiasteroids has been reported. In this letter a short and stereoselective synthesis of 6-thiaandrostanes and 6-thiacholestanes is presented.

Starting from the t-butylether of cholesterol the corresponding keto-acid $1a^5$ was obtained in 85% yield by modification of existing procedures. CH₂N₂-esterification followed by NaBH₄-reduction afforded 5α -H lactone 2a in quantitative yield. However, as the future reaction at C-5 with nucleophiles is expected to proceed with inversion at this centre the preparation of 5β -H lactone 3a was also necessary in order to obtain 6-thiasteroids of natural configuration. The latter goal could be achieved in yields over 80% by NaBH₄/DME reduction at -10%C of acid 1a or alternatively by 8_2 H₆/THF/r.t. reduction of the Na-salt of 1a. This dramatic change in stereoselectivity of the C-5 carbonyl reduction is accounted for by assuming a hydride transfer to C-5 from the β -face of the intermediate carboxylate-borane addition complex 1a0. Additional support for this explanation is found in the fact that 1a2H₆ reduction of the ester of 1a3 gives exclusively 1a3 which is also formed in the NaBH₄/DME reduction of the Na-salt of 1a3.

With the 5α - and 5β -lactones at hand the synthesis of 6-oxa- and 6-thiasteroids is straightforward. LAH-reduction of 2a and 3a afforded the corresponding diols 5a and 6a which were cyclized to 6-oxacholestanes 7a and 8a upon p-TsCl/pyridine treatment. Removal of the tBt function by p-TsOH/C₆H₆ reflux and CrO_3 or Ag_2CO_3 /celite⁶ oxidation gave the corresponding 6-oxacholestanones 11a and 12a. The 6-thiaderivatives were obtained as follows: mesylation of 6a in pyridine at -15 C°(24 hr) followed by additional stirring at 0°C (24 hr) gave the oily dimesylate⁷ which upon treatment with Na_2S (anhydrous) in $EtOH^8$ afforded 6-thiacholestanol butylether 9a [mp. 144-146°C, pmr δ (CDCl₃) 0,65 s (18- CH_3) and 1.02 s (19- CH_3)].

The same procedure applied to diol $\underline{5a}$ afforded $\underline{10a}$ [mp. $90-92^{\circ}$ C, pmr δ (CDCl₃) 0.66 s (18-CH₃) and 1.18 s (19-CH₃), 2.66 m (5-H; J_{4a,5} = 13 Hz, J_{4e,5} = 3.5 Hz)]. It should be emphasized that the success of latter cyclization completely depends upon the choice of the t-Bu ether at C-3 as protecting group.

In addition the ethers $\underline{9a}$ and $\underline{10a}$ were converted into the corresponding alcohols (p-TsOH) and oxidized with $Ag_2CO_3/celite$ to the ketones $\underline{13a}$ [mp. $147.5-149.5^{\circ}C$, pmr $\delta(CDCl_3)$ 0.70 s $(18-CH_3)$, 1.22 s $(19-CH_3)$] and $\underline{14a}$ [mp. $148-154^{\circ}C$, pmr $\delta(CDCl_3)$ 0.69 s $(18-CH_3)$ and 1.27 s $(19-CH_3)$].

In a similar series of reactions androstane-3,17-diol di-t-butylether gave the corresponding 6-oxasteroids $\underline{11c}$ and $\underline{12c}$ while the diols $\underline{5b}$ and $\underline{6b}$ were converted into 6-thiasteroids $\underline{9b}$ [mp. 236-238°C, pmr δ (CDCl₃) 0.71 s (18-CH₃) and 1.04 s (19-CH₃)] and $\underline{10b}$ [mp. 162-163°C, pmr δ (CDCl₃) 0.71 s (18-CH₃) and 1.20 s (19-CH₃)] which upon ether cleavage and \underline{Ag}_2CO_3 oxidation gave the 3-oxo-compounds $\underline{13c}$ [mp. 197°C (dec), pmr δ (CDCl₃) 0.78 s (18-CH₃) and 1.24 (19-CH₃)] and $\underline{14c}$ [mp. 147-152°C, pmr δ (CDCl₃) 0.79 s (18-CH₃) and 1.30 s (19-CH₃)].

Interestingly during the Na₂S cyclization of the dimesylate of 5b the unsaturated seco-sulfide 15 was formed in ca. 15% yield. However, the latter product upon irradiation in benzene (Philips SP-500 High Pressure) could be also converted into the 5β -derivative 10b.

All of the 6-thiasteroids synthesized were oxidized to the corresponding

<u>5</u> 5α-Η <u>6</u> 5β-Η

<u>7</u> 5α-Η, X = O

<u>Β</u> 5β-H, X = O <u>9</u> 5α-H, X = S

10 5β-H, X = S

<u>11</u> 5α-H,X=O

12 5β-H, X = O 13 5α-H, X = S

14 5β-H, X • S

a. R= C₈H₁₇ b. R= OtBt c. R= OH

sulfoxides and sulfones. Furthermore the present procedure could also be applied in the synthesis of the corresponding 6-aza-derivatives.

Complete results will be published in our full paper.

ACKNOWLEDGEMENT

The authors wish to thank Professor H.O. Huisman for his interest and encouragement.

REFERENCES

- Extracted in part from the Ph.D. thesis of H. Kesselaar, University
 of Amsterdam (1971).
- 2a. M.E. Wolff and G. Zanati, Experientia, 1115 (1970).
- b. G. Zanati and M.E. Wolff, J.Med.Chem., 15, 368 (1972).
- H.O. Huisman "Total synthesis of heterocyclic steroids" in MTP International Review of Science, Vol 8 Steroids, W.F. Johns Ed., Butterworths, London.
- 4. H.C. Beyerman and G.J. Heiszwolf, Rec.Trav.Chim. Pays-Bas, 84, 203 1965.
- 5. Satisfactory analytical data have been obtained for all new compounds.
- 6. M. Fetizon and M. Golfier, C.R. Acad. Sci., Paris, Ser C, 267, 900 (1968).
- Reaction at different conditions gave rise to mono-mesylation, formation of oxasteroids and/or elimination products.
- 8. R.W. Bost and M.W. Conn, Org.Synth., 15, 72 (1935).